This is a post-peer-review, pre-copyedit version of an article published in European Journal of Nutrition. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00394-018-1730-1
Modulation of hepatic inflammation and energy-sensing pathways in the rat liver by high-fructose diet and chronic stress

Nataša Veličković · Ana Teofilović · Dragana Ilić · Ana Djordjevic · Danijela Vojnović Milutinović · Snježana Petrović · Frederic Preitner · Luc Tappy · Gordana Matić

Received: 7 February 2018 / Accepted: 22 May 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Purpose High-fructose consumption and chronic stress are both associated with metabolic inflammation and insulin resistance. Recently, disturbed activity of energy sensor AMP-activated protein kinase (AMPK) was recognized as mediator between nutrient-induced stress and inflammation. Thus, we analyzed the effects of high-fructose diet, alone or in combination with chronic stress, on glucose homeostasis, inflammation and expression of energy sensing proteins in the rat liver.

Methods In male Wistar rats exposed to 9-week 20% fructose diet and/or 4-week chronic unpredictable stress we measured plasma and hepatic corticosterone level, indicators of glucose homeostasis and lipid metabolism, hepatic inflammation (pro- and anti-inflammatory cytokine levels, Toll-like receptor 4, NLRP3, activation of NFκB, JNK and ERK pathways) and levels of energy-sensing proteins AMPK, SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α).

Results High-fructose diet led to glucose intolerance, activation of NFκB and JNK pathways and increased intrahepatic IL-1β, TNFα and inhibitory phosphorylation of insulin receptor substrate 1 on Ser307. It also decreased phospho-AMPK/AMPK ratio and increased SIRT1 expression. Stress alone increased plasma and hepatic corticosterone but did not influence glucose tolerance, nor hepatic inflammatory or energy-sensing proteins. After the combined treatment, hepatic corticosterone was increased, glucose tolerance remained preserved, while hepatic inflammation was partially prevented despite decreased AMPK activity.

Conclusion High-fructose diet resulted in glucose intolerance, hepatic inflammation, decreased AMPK activity and reduced insulin sensitivity. Chronic stress alone did not exert such effects, but when applied together with high-fructose diet it could partially prevent fructose-induced inflammation, presumably due to increased hepatic glucocorticoids.

Keywords Inflammation · AMP-activated protein kinase · Dietary fructose · Stress · Rat liver

Introduction

Modern way of living, which combines consumption of energy-dense foods and psychosocial stress, is associated with health threats, such as metabolic syndrome, cardiovascular diseases and cancer. Fructose-fed rat is a model reproducing various aspects of metabolic syndrome, including hypertriglyceridemia, insulin resistance and hepatic steatosis [1]. Moreover, stress increases visceral adiposity and weight gain by changing eating patterns and shifting preference towards palatable foods high in fat and sugar [2]. However, the relationship between stress and obesity remains elusive, as some people lose weight when exposed to stress [3]. Both fructose- and stress-mediated metabolic disturbances are associated with
low-grade chronic inflammation, characterized by activation of proinflammatory nuclear factor kappa B (NFκB), c-Jun N-terminal kinase 1 (JNK) and extracellular signal-regulated kinase (ERK) signaling pathways and increased production of proinflammatory cytokines (tumor necrosis factor α (TNFα), interleukin (IL) 1β and IL-6) [4]. Inflammatory response may in turn impair insulin signaling by increasing inhibitory phosphorylation of insulin receptor substrate 1 (IRS1) on serine residues [5]. Indeed, JNK phosphorylates IRS1 on Ser307 residue, which represents an early hallmark of tissue insulin resistance [6], while ERK promotes insulin resistance through phosphorylation of IRS1 on Ser612 [7].

AMP-activated protein kinase (AMPK), one of the principal cellular energy sensors, plays an important role in maintaining energy homeostasis through downregulation of ATP-consuming pathways and stimulation of ATP-producing pathways [8]. Impairment of hepatic AMPK activity is a key pathological event in the development of the insulin resistance and hepatic steatosis in the metabolic syndrome [9]. However, the new emerging role of AMPK signaling is in the regulation of metabolic inflammation [10]. Studies in both humans and experimental animals showed a negative association between diet-induced inflammation and AMPK activity [9]. Moreover, high-fat or high-fructose diet activates inflammation by suppressing AMPK pathway in the heart [11, 12]. In addition, glucocorticoid-induced changes in AMPK constitute a novel mechanism that could explain the deposition of lipids in visceral adipose and hepatic tissue.

Multiple studies have demonstrated that AMPK restrains inflammation through inhibition of NFκB, a key regulator of innate immunity and inflammation [13, 14]. In unstimulated cells, NFκB is sequestered in the cytoplasm in an inactive complex with inhibitory protein kB (IκB) and is activated by phosphorylation and degradation of IκB [15]. Since AMPK activity is decreased in obesity and metabolic syndrome, this could lead to derepression of proinflammatory stimuli associated with diet/obesity and appearance of a low-grade metabolic inflammation [16]. Inhibitory effects of AMPK on NFκB signaling are likely to be indirect and governed by downstream mediators, such as sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) [16]. Indeed, SIRT1 deacetylates the RelA/p65 subunit of NFκB complex that triggers the ubiquitination and degradation of NFκB [17]. Increased activity of PGC-1α could inhibit NFκB activity and proinflammatory response induced by TNFα in vascular cells [18]. High-fructose ingestion has been described to reduce [19] or to increase SIRT1 and PGC-1α activities [20], and the effect of stress on SIRT1 activity is also still controversial [21]. Therefore, the dysregulation of energy sensing may link nutrient metabolism to inflammation and insulin resistance.

Only few studies have focused on the mechanisms underlying metabolic inflammation provoked by the interaction between a carbohydrate-enriched diet and stress [22, 23]. The aim of this study was to investigate the effects of high-fructose diet and chronic unpredictable stress, separately or in combination, on glucose homeostasis and hepatic inflammation in the male Wistar rats, as well as to reveal whether these metabolic perturbations are linked with the alterations in energy-sensing proteins levels. The concentration of 20% fructose solution was chosen to resemble the consumption of fructose-sweetened beverages in human population [24], while chronic unpredictable stress protocol represents paradigm for everyday stress exposure in human life and consisted of psychological and physical stressors [25]. We examined the effect of fructose-enriched diet and/or chronic stress on the liver histology, the plasma and hepatic corticosterone level, parameters of glucose homeostasis (glucose tolerance, fasting glucose and insulin plasma values, phosphoenolpyruvate carboxykinase (PEPCK) mRNA and phosphorylation of IRS1 at Ser307) and lipid metabolism (plasma and hepatic triglyceride level and hepatic fatty acid composition). Hepatic inflammation was characterized by measuring the tissue level of pro- and anti-inflammatory cytokines, as well as by analyzing expression of proinflammatory factor NFκB and kinases JNK and ERK, Toll-like receptor-4 (TLR4) and Nod-like receptor protein 3 (NLRP3). In addition, the expression of main energy-sensing proteins AMPK, SIRT1 and PGC-1α were examined in the liver of rats exposed to high dietary fructose, alone or in combination with stress.

Materials and methods

Animals and treatment

Experiments were conducted on 2.5-month-old Wistar male rats, bred in our laboratory. At the beginning of the 9-week experiment, rats were divided into four groups (n = 9 per group) and housed three per cage. Untreated control group (C) had free access to a standard chow diet (commercial food—Veterinary Institute, Subotica, Serbia) and drinking water [26]. The fructose-fed group (F) received high-fructose diet (20% fructose in drinking water, API-PEK, Bečej, Serbia) and commercial food. The third, stress (S) group of animals was subjected to a modified version of the chronic unpredictable stress (CUS) protocol of Joels et al. [25] during the last 4 weeks of the treatment. The animals were successively exposed to one of the following daily stressors: forced swimming in cold water for 10 min, physical restraint for 30 min, cold room (4 °C) for 50 min, wet bedding for 4 h, rocking cages for 1 h and cage tilt (45°) overnight. The time and type of
daily stressors were randomly selected at the beginning of the treatment. The fourth group (SF) was exposed to both 9-week high-fructose diet and 4-week stress protocol. Free access to food was allowed to all the animals. Daily food and fluid intake were measured throughout the treatment, while body weight was recorded weekly. Total energy intake was expressed as kJ per day per animal and was calculated as previously reported [27]. The animals were maintained under a 12-h light–dark cycle (lights on at 7:00 a.m.) at 22 °C and constant humidity. The protocols were performed in compliance with Directive 2010/63/EU on the protection of animals used for experimental and other scientific purposes and were approved by the Ethical Committee for the Use of Laboratory Animals of the Institute for Biological Research “Siniša Stanković”, University of Belgrade (reference number 3-12/12).

Blood plasma preparation, tissue collection, and determination of biochemical parameters

After an overnight fast, animals were killed at light onset (7:00 AM) by decapitation with a guillotine (Harvard Apparatus, USA). Trunk blood was rapidly collected and the concentrations of glucose were measured by a MultiCare® glucometer, using MultiCare Glucose strips (Biochemical Systems International, Italy), while triglyceride concentrations in the blood were measured by MultiCare Triglycerides strips (Biochemical Systems International, Italy). Plasma was isolated by centrifugation at 1600×g for 10 min at 4 °C and then stored at −20 °C. The concentration of plasma insulin was determined by the RIA method, using rat insulin standards (INEP, Serbia). Assay sensitivity was 0.6 mIU/L and the intra-assay coefficient of variation was 5.24%. Corticosterone was measured in the plasma and liver cytoplasmic extracts using the Corticosterone EIA kits (AC-14F1 and AC-15F1, Immunodiagnostic Systems Ltd, UK, respectively) according to the manufacturer's instructions. Absorbance at 450 nm (reference 650 nm) was measured spectrophotometrically (Multiskan Spectrum, Thermo, Finland). Corticosterone concentrations were determined using four parameter logistic (4PL) curve-fitting method (Prism, GraphPad Software) and given as ng/mL or ng/mg of protein. The assay sensitivity was 0.17 ng/mL, while intra-assay and inter-assay CVs were 5.9 and 8.9%, respectively. To validate the use of cytoplasmic extracts in the ELISA, a spike and recovery experiment was done with the known amount of the kit standard. A dilution series was performed comparing the spiked vs. the unspiked sample and the obtained recovery range was between 87 and 113%.

After blood collection, the livers were perfused with cold 0.9% NaCl, carefully excised and frozen in liquid nitrogen. Tissues were kept in liquid nitrogen for protein isolation.

Histological analysis of the liver

Samples of liver tissue were fixed in 4% paraformaldehyde for 24 h, dehydrated in an ethanol gradient, cleared in xylene and embedded in paraffin. Tissue blocks were sectioned at 5 μm thickness and stained with hematoxylin and eosin. Microscopic analysis was carried out using a workstation comprising a microscope Leica DM RB Photo Microscope (Leica, Wetzlar, Germany) equipped with the Leica DFC320 digital camera (Leica, Wetzlar, Germany).

Determination of hepatic triglycerides and fatty acid profile of total plasma and hepatic lipids

Liver triglycerides were isolated from 100 mg of liver tissue using a modified Folch method [28] and analyzed with Triglycerides Reagent (Code 12528, Biosystem) on the semi-automatic biochemistry analyzer Rayto 1904-C (Rayto, China).

For analysis of fatty acid profile, total plasma lipids were extracted by the method of Glaser et al. [29], while total hepatic lipid extracts were isolated from ~500 mg liver tissue by the method of Petrovic et al. [30]. Fatty acid composition of total lipids from plasma and liver was analyzed according to the protocol described by Petrovic et al. [30]. Individual fatty acid methyl esters in the samples were identified by comparing sample peak retention times with polyunsaturated fatty acid (PUFA)-2 standard mixture (Restek Co, Bellefonte, PA, USA). Fatty acid profiles were expressed as the percentage areas of total fatty acids. The Δ9 desaturase activity was estimated as the product-to-precursor ratio of 18:1/18:0 [30].

Estimation of glucose tolerance

Intraperitoneal glucose tolerance test (IPGTT) was performed 3 days before the end of the treatment. Food was removed the night before and fructose solution was temporarily replaced with water. A bolus of glucose was injected intraperitoneally (2 g/kg). Blood was obtained from the tail, and the glucose level was measured at 0, 30, 60, 90 and 120 min after injection. The area under the glycemic curve over the course of the experiment (AUC glucose 0–120 min, mmol/L vs. min) was calculated by the trapezoidal rule.

Preparation of cytoplasmic, nuclear and whole cell extracts

Frozen livers were weighed and homogenized with Janke–Kunkel ultraturrax (30 s/30 s pause/30 s) in 4 vol. (w/v) of ice-cold homogenization buffer (20 mM Tris–HCl, pH 7.2, 10% glycerol, 50 mM NaCl, 1 mM EDTA-Na₂, 1 mM EGTA-Na₂, 2 mM DTT, protease and phosphatase
inhibitors). The homogenates were filtered through gauze and centrifuged (2000xg, 15 min, 4 °C). The resulting supernatants were further processed to generate cytoplasmic fraction, while the pellets were used to obtain nuclear extracts, as previously published [27]. All steps were conducted at 4 °C and all samples were aliquoted and stored at −70 °C.

For preparation of whole cell extracts, tissues were homogenized with a glass–Teflon homogenizer in 5 vol. (w/v) of ice-cold RIPA buffer (50 mM Tris–HCl, pH 7.2, 1 mM EDTA-Na₂, 150 mM NaCl, 0.1% SDS, 1% Nonidet P-40, 0.5% sodium deoxycholate, 2 mM DTT, protease and phosphatase inhibitors) and homogenates were sonicated (3 x 5 s, 1 A, 50/60 Hz). After 60 min of incubation on ice with continuous agitation and frequent vortexing, suspensions were centrifuged (16,000xg, 20 min, 4 °C) and the resulting supernatants were aliquoted, stored at −70 °C and used as whole cell extracts.

Protein content of all cellular fractions was determined by the method of Spector [31] using bovine serum albumin as a standard.

Cytokine immunoassays

Levels of cytokines in the liver were determined by specific ELISA kit assay (Rat TNFα ELISA kit, # 88-7340-88, eBioscience; rat IL-1β ELISA kit, DY501; rat IL-6 ELISA kit, DY506; rat IL-4 ELISA kit, DY504; rat IL-10 ELISA kit, DY522, all from R&D Systems) [32]. Cytokine measurement was done in whole cell extracts from the livers isolated by previously published protocol [33]. In brief, 100 mg of liver was homogenized in 10 vol. (w/v) of PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄, 0.5% Triton X-100 and protease inhibitors), then sonicated 3 x 5 s/30 s pause (30 Hz, pulse 0.5). Homogenates were centrifuged at 12,000xg, 10 min, 4 °C, and the resulting supernatants were aliquoted and stored at −70 °C. The level of cytokines was measured in 96-well plates according to the manufacturer’s instructions. Absorbance was read at 450 and 540 nm on the Multiskan Spectrum (Thermo Electron Corporation, Finland). Results were expressed as pg/mg of protein.

Western blot analysis

After the samples were boiled in Laemmli’s buffer, 40 µg of cytosolic or whole cell extract, or 60 µg of nuclear extract proteins was resolved on 7.5 or 10% SDS-polyacrylamide gels. The samples intended to be compared were always run on the same gel. Separated proteins were transferred to PVDF membranes (Immobilon-FL, Millipore). The blots were blocked by PBS containing 2% non-fat dry milk for 1 h at room temperature. After extensive washing (PBS containing 0.1% Tween 20), membranes were incubated overnight at 4 °C with the following anti-rabbit polyclonal antibodies: NFκB (p65 subunit) antibody (sc-372, 1:250), IkBα antibody (sc-371, 1:250), AMPKα 1/2 (sc-25792, 1:500), SIRT1 antibody (sc-15404, 1:250), JNK1/2 (sc-571, 1:500), all from Santa Cruz Biotechnology. Phospho-IκBα antibody (Ser32) (#2859, 1:1000), phospho-AMPK (Thr172) (#41885, 1:500), phospho-ERK1/2 (Thr202/Tyr204) (#9101, 1:250), ERK1/2 (#9102, 1:1000), phospho-JNK1/2 (Thr183/Tyr185) (#9251S, 1:250) were all from Cell Signaling, while PGC-1α (ab54481, 1:1000), NLRP3 (ab214185, 1:500) and phospho-IRS1 (Ser307) antibodies (ab5599, 1:1000) were from Abcam. Anti-β-actin (ab-8227, Abcam, 1:10,000) and TATA box-binding protein (TBP, ab-22595, Abcam, 1:1000) were used as an equal loading control for cytosolic/whole cell and nuclear protein, respectively. Membranes were subsequently washed and incubated for 90 min with horseradish peroxidase-conjugated secondary antibodies (Thermo Scientific, 1:5000). The immunoreactive proteins were visualized by chemiluminescent (ECL) method and quantitative analysis was performed by ImageJ software (National Institute of Health, USA).

RNA isolation and reverse transcription

Total RNA was isolated from liver tissue using TRIzol® Reagent (Ambion, Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. Quantitative and qualitative evaluation of the isolated RNA was performed spectrophotometrically (OD 260/280 > 1.8 was considered satisfactory) and on 2% agarose gel. Prior to cDNA synthesis, DNA contamination was removed by DNase I treatment (Fermentas, Burlington, ON, Canada). Reverse transcription was performed using a high-capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions. The cDNAs were stored at −70 °C until use.

Real-time PCR

Quantification of glucocorticoid receptor (GR) and PEPCK gene expression in the liver was performed by TaqMan® real-time polymerase chain reaction (PCR). The following probe sets were used: GR (Rn00561369_m1*) and PEPCK (Rn01529014_m1*), all obtained from Applied Biosystems Assay-on Demand Gene Expression Products. β-Actin (Rn00667869_m1*) was used as internal control for quantitative normalization of cDNA. Real-time PCR was performed using the QuantStudio™ Real-Time PCR Systems as previously described [26]. The expression of TLR4 and AMPK genes was analyzed using Power SYBR® Green PCR Master Mix (Applied Biosystems) and specific primers (Metabion): TLR4 forward 5'-ATC ATC CAG GAA
GCG TTC CA-3′, reverse 5′-GCT AAG AAG GCG ATA CAA TTC CTA TG-3′ and AMPKα1 forward 5′-GGG ATC CAT CAG CAA CTA TCG TTG GAG CTA CGT-3′. Quantitative normalization of cDNA in each sample was performed using β-actin (forward 5′-CCC TGG CTC CTA GCA CCA T-3′, reverse 5′-GAG CCA CCA ATC CAC ACA GA-3′) as endogenous control. Real-time PCR was performed using QuantStudio™ Real-Time PCR Systems (Applied Biosystems, Foster City, CA, USA) as previously published [26]. Relative quantification of gene expression was examined using comparative $2^{-\Delta\Delta C_T}$ method described by Livak and Schmittgen [34]. The results were analyzed by QuantStudio™ Design and Analysis v1.3.1 (Applied Biosystems, Foster City, CA, USA) with a confidence level of 95% ($p \leq 0.05$).

Statistical analysis

The data for physiological, biochemical and insulin sensitivity parameters, as well as ELISA, Western blot and real-time PCR data were given as means ± SEM. The normality of the data was analyzed by Shapiro–Wilk test. Two-way ANOVA followed by Tukey post hoc test was used to evaluate the effects of fructose diet and stress, as well as their interaction on treated groups. Results were considered statistically significant at $p < 0.05$. Statistical analyses were performed by STATISTICA 8.0. software (StatSoft, Inc., USA).

Results

Effects of high-fructose diet and/or stress on energy intake, body composition and corticosterone level in male Wistar rats

Fructose diet caused a significantly higher total energy intake (37−44%) in both fructose and fructose + stress groups, as compared to untreated controls or rats exposed only to stress (Table 1, $p < 0.001$ for all comparisons). However, the increase in caloric intake was not translated into significant increase of either body weight or liver mass in fructose-fed rats, with the exception of a 26% increase in the liver-to-body weight ratio in the fructose-only group compared to controls (Table 1, $p < 0.05$, F vs. C).

As expected, a significant increase of plasma corticosterone level was detected in stressed animals on standard diet in comparison to the control animals (Table 1, $p < 0.01$, S vs. C), while it was not changed in the liver of fructose-fed stressed animals. The stress treatment also increased intracellular corticosterone level by 45% in the liver of both groups exposed to stress in comparison to untreated control rats (Table 1, $p < 0.05$, S vs. C; SF vs. C). The increase of stress hormone is not related to altered GR gene expression since GR mRNA was not changed in any of the examined group (Fig. 1).

Table 1 The effects of high-fructose diet and chronic stress on physiological and biochemical parameters in male Wistar rats

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Fructose</th>
<th>Stress</th>
<th>Fructose + stress</th>
<th>Two-way ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fructose (kJ/day/animal)</td>
<td>182.01 ± 3.46</td>
<td>261.99 ± 9.98***</td>
<td>175.68 ± 4.46</td>
<td>248.68 ± 9.04*** < 0.001 NS NS</td>
</tr>
<tr>
<td>Body mass (g)</td>
<td>369 ± 6.25</td>
<td>330 ± 14.78</td>
<td>338 ± 13.11</td>
<td>338 ± 15.25</td>
<td>NS NS NS</td>
</tr>
<tr>
<td>Mass of liver (g)</td>
<td>15.45 ± 0.72</td>
<td>16.99 ± 0.81</td>
<td>14.58 ± 0.80</td>
<td>16.86 ± 1.20</td>
<td>NS NS NS</td>
</tr>
<tr>
<td>Liver/body ratio (x 1000)</td>
<td>41.81 ± 1.79</td>
<td>52.17 ± 1.21*</td>
<td>43.05 ± 1.35</td>
<td>50.95 ± 4.72</td>
<td>< 0.01 NS NS</td>
</tr>
<tr>
<td>Plasma CORT (ng/mL)</td>
<td>168.42 ± 36.13</td>
<td>196.2 ± 55.8</td>
<td>523.59 ± 108**</td>
<td>249.67 ± 52.57</td>
<td>NS < 0.01 NS</td>
</tr>
<tr>
<td>Liver CORT (ng/mg)</td>
<td>0.33 ± 0.04</td>
<td>0.38 ± 0.03</td>
<td>0.48 ± 0.03*</td>
<td>0.48 ± 0.04*</td>
<td>NS < 0.01 NS</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>4.54 ± 0.13</td>
<td>4.03 ± 0.14*</td>
<td>4.18 ± 0.14</td>
<td>3.92 ± 0.13**</td>
<td>< 0.01 NS NS</td>
</tr>
<tr>
<td>Insulin (mIU/L)</td>
<td>10.07 ± 0.18</td>
<td>19.44 ± 2.45*</td>
<td>10.62 ± 1.87</td>
<td>20.84 ± 3.40**</td>
<td>< 0.001 NS NS</td>
</tr>
<tr>
<td>IPGTT (AUC glucose level)</td>
<td>960.40 ± 26.95</td>
<td>1635.00 ± 206.30**</td>
<td>1094.20 ± 153.90</td>
<td>1010.20 ± 51.14$ < 0.05 $ NS < 0.01</td>
<td></td>
</tr>
</tbody>
</table>

Cumulated caloric intake, body and liver mass, blood glucose, plasma insulin and corticosterone (CORT), quantification of the glycemic excursion during the IPGTT (AUC) and liver corticosterone level were measured after 9 weeks on high-fructose diet and 4 weeks of chronic unpredictable stress in male Wistar rats.

All data are presented as means ± SEM ($n = 8–9$). Comparisons between groups were made by two-way ANOVA followed by post hoc Tukey test. Different symbols denote the values that are significantly different from control group (*$p < 0.05$, **$p < 0.01$, ***$p < 0.001$) and fructose-fed group ($p < 0.05$).

NS non-significant
High-fructose diet promotes metabolic dysregulation

Fructose treatment led to a ~twofold increase of plasma insulin and a decrease of fasting plasma glucose (by 11–13%) in both fructose and fructose + stress groups (Table 1, p < 0.05, F vs. C; p < 0.01, SF vs. C). The observed hypoglycemia is in accordance with decreased PEPCK mRNA level in both fructose-fed groups (Fig. 1, p < 0.05, F vs. C; SF vs. C). The glycemic excursion during the IPGTT was significantly higher in the fructose-fed group compared to untreated control; still, this increase was more prominent in the fructose + stress group (Table 2, p < 0.05, F vs. C; p < 0.01, SF vs. C). Liver triglycerides were not changed in any of the examined groups, although stressed animals demonstrated slightly decreased hepatic lipids as compared to the control or fructose-fed rats (Table 2). This result was confirmed by histological analysis, which demonstrated that dietary fructose and/or stress treatment did not cause pathological changes or lipid accumulation in the liver (Fig. 3). Fatty acid profile of hepatic lipids revealed significantly increased palmitic, oleic acid (18:1n-9) and monounsaturated fatty acids (MUFA) by fructose diet, irrespective of stress, while PUFA was decreased with fructose diet (Table 2, palmitic acid: p < 0.001, F vs. C; SF vs. C; oleic acid: p < 0.05, F vs. C; p < 0.01, SF vs. C; MUFA, p < 0.05, F vs. C, p < 0.05, SF vs. S; PUFA, p < 0.001, F vs. C, SF vs. C). On the other hand, stearic acid (18:0) was not changed, resulting in increased hepatic Δ9 desaturase index in both fructose-fed groups (Table 2, p < 0.05, F vs. C; p < 0.01, SF vs. C).

Hepatic inflammation is induced by high-fructose diet

Fructose intake increased the hepatic level of proinflammatory cytokines TNFα and IL-1β by 45–55% in the
fructose-fed group in comparison to untreated control animals (Table 3, \(p < 0.05 \), F vs. C, for both TNFα and IL-1β). Similarly, TNFα and IL-1β were increased by 54-60% in the fructose + stress group as compared to the stress group (Table 3, \(p < 0.05 \), SF vs. S, for both cytokines). Stress generally tended to decrease by ~20% the hepatic protein levels of TNFα and IL-1β in the fructose + stress group compared to fructose-fed animals, although this trend did not reach

![Image](357x542 to 501x716)

Fig. 2 Effect of high-fructose diet and chronic stress on the indicators of glucose homeostasis [intraperitoneal glucose tolerance test (IPGT) and inhibitory Ser307 phosphorylation of IRS1 (phospho-Ser307 IRS1)]. a IPGTT was done in male Wistar rats after overnight fasting. The intraperitoneal injection of glucose (2 g/kg) was administered and glucose concentration was determined in the blood drawn from the tail vein before glucose injection and 15, 30, 60, 90, and 120 min after the injection. Each experimental point represents the mean ± SEM (n=6 rats per group). b Representative Western blot and relative quantification of the phospho-Ser307 IRS1 in the whole cell extract of the liver of control untreated (C), fructose-fed (F), stressed (S) and fructose-fed stressed (SF) rats.

Table 2 Triglyceride (TG) levels and fatty acid alterations in total plasma and hepatic lipids and estimated hepatic Δ9 desaturase activities in male Wistar rats

<table>
<thead>
<tr>
<th>Fatty acid (%)</th>
<th>Control</th>
<th>Fructose</th>
<th>Stress</th>
<th>Fructose + stress</th>
<th>Two-way ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma TG (mmol/L)</td>
<td>1.09 ± 0.07</td>
<td>1.94 ± 0.11***</td>
<td>1.0 ± 0.06</td>
<td>1.55 ± 0.14**</td>
<td><0.001</td>
</tr>
<tr>
<td>Liver TG (mg/g)</td>
<td>43.76 ± 5.94</td>
<td>42.11 ± 4.25</td>
<td>32.26 ± 4.12</td>
<td>31.54 ± 1.21</td>
<td>NS</td>
</tr>
<tr>
<td>Plasma palmitic acid (16:0) (%)</td>
<td>24.58 ± 0.38</td>
<td>26.13 ± 0.58*</td>
<td>23.15 ± 0.21</td>
<td>26.55 ± 0.24**</td>
<td><0.001</td>
</tr>
<tr>
<td>Hepatic palmitic acid (16:0) (%)</td>
<td>19.52 ± 0.19</td>
<td>21.4 ± 0.4***</td>
<td>18.61 ± 0.13</td>
<td>21.25 ± 0.3***</td>
<td><0.001</td>
</tr>
<tr>
<td>Hepatic stearic acid (18:0) (%)</td>
<td>17.54 ± 0.49</td>
<td>16.54 ± 0.97</td>
<td>18.77 ± 0.49</td>
<td>15.43 ± 0.47</td>
<td>NS</td>
</tr>
<tr>
<td>Hepatic oleic acid (18:1n-9) (%)</td>
<td>5.85 ± 0.32</td>
<td>9.29 ± 1.16*</td>
<td>4.90 ± 0.21</td>
<td>10.41 ± 1.14**</td>
<td><0.001</td>
</tr>
<tr>
<td>MUFA (%)</td>
<td>9.11 ± 0.33</td>
<td>14.33 ± 1.55*</td>
<td>7.61 ± 0.26</td>
<td>12.84 ± 1.72*</td>
<td><0.001</td>
</tr>
<tr>
<td>PUFA (%)</td>
<td>54.78 ± 0.29</td>
<td>47.72 ± 1.04***</td>
<td>55.2 ± 0.17</td>
<td>49.45 ± 0.97***</td>
<td><0.001</td>
</tr>
<tr>
<td>Δ9 desaturase (18:1n-9/18:0)</td>
<td>0.33 ± 0.02</td>
<td>0.61 ± 0.11*</td>
<td>0.26 ± 0.01</td>
<td>0.69 ± 0.09**</td>
<td><0.001</td>
</tr>
</tbody>
</table>

The data are presented as means ± SEM (n=8). Fatty acid concentrations are expressed as % of totally detected fatty acids. Comparisons between groups were made by two-way ANOVA followed by post hoc Tukey test. Different symbols denote the values that are significantly different from control group (*\(p < 0.05 \), **\(p < 0.01 \), ***\(p < 0.001 \)), fructose-fed group (\(\tilde{p} < 0.05 \), $$$\tilde{p} < 0.001 \)) and stressed group (\(\tilde{p} < 0.05 \))

MUFA monounsaturated fatty acids, **PUFA** polyunsaturated fatty acids, **NS** non-significant.

![Image](332x706 to 399x720)

![Image](234x582 to 288x668)
As a result, TNFα and IL-1β protein levels, which were increased in the fructose-only group compared to controls, were not significantly different in the fructose + stress group as compared to controls (Table 3). A different pattern was observed for hepatic IL-6 protein that was increased only in fructose + stress group compared to controls. The levels of proinflammatory and anti-inflammatory cytokines in the hepatic whole cell extracts were determined by ELISA test. The data are presented as means ± SEM (n = 6–8). Comparisons between groups were made by two-way ANOVA followed by post hoc Tukey test. Different symbols denote the values that are significantly different from control group (*p < 0.05) or stress group (#p < 0.05, ###p < 0.001).

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Fructose</th>
<th>Stress</th>
<th>Fructose + stress</th>
<th>Two-way ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFα (pg/mg)</td>
<td>33.37 ± 3.38</td>
<td>51.52 ± 1.88*</td>
<td>26.82 ± 2.20</td>
<td>40.96 ± 5.11#</td>
<td>< 0.001</td>
</tr>
<tr>
<td>IL-1β (pg/mg)</td>
<td>85.53 ± 8.83</td>
<td>124.13 ± 6.72*</td>
<td>66.96 ± 5.35</td>
<td>107.54 ± 12.61#</td>
<td>< 0.001</td>
</tr>
<tr>
<td>IL-6 (pg/mg)</td>
<td>698.36 ± 50.37</td>
<td>888.18 ± 56.54</td>
<td>491.72 ± 32.03</td>
<td>1069.6 ± 120.6###</td>
<td>< 0.001</td>
</tr>
<tr>
<td>IL-4 (pg/mg)</td>
<td>77.03 ± 8.18</td>
<td>94.91 ± 7.34</td>
<td>82.87 ± 5.19</td>
<td>99.68 ± 11.6</td>
<td>NS</td>
</tr>
<tr>
<td>IL-10 (pg/mg)</td>
<td>254.01 ± 20.68</td>
<td>247.55 ± 57.57</td>
<td>149.93 ± 14.5</td>
<td>311.64 ± 72.28</td>
<td>NS</td>
</tr>
</tbody>
</table>

The levels of proinflammatory and anti-inflammatory cytokines in the hepatic whole cell extracts were determined by ELISA test. The data are presented as means ± SEM (n = 6–8). Comparisons between groups were made by two-way ANOVA followed by post hoc Tukey test. Different symbols denote the values that are significantly different from control group (*p < 0.05) or stress group (#p < 0.05, ###p < 0.001).

NS non-significant.

Fig. 3 Histological analysis of the liver after high-fructose diet and chronic stress. Representative micrographs of hematoxylin–eosin-stained sections of hepatic tissue of control (C), fructose (F), stress (S) and stress + fructose (SF) groups of animals. Scale bar: 100 µm.
group in comparison to untreated controls and stress group (Table 3, \(p < 0.05 \), SF vs. C; \(p < 0.001 \), SF vs. S). Concentrations of anti-inflammatory cytokines IL-4 and IL-10 were not significantly affected by any treatment (Table 3).

Proinflammatory protein NFkB is a key mediator of metabolic inflammation in response to cytokine activation. Upon stimulation, the inhibitory protein IκB is phosphorylated and dissociates from NFkB, allowing its nuclear translocation. While the treatments had no effect on NFkB levels in the cytoplasmic fraction (Fig. 4a), fructose feeding increased the nuclear levels of NFkB by 30% in the liver of fructose-fed unstressed rats in comparison to untreated control animals (Fig. 4a, \(p < 0.05 \), F vs. C). Interestingly, this response to fructose was moderately blunted by stress (− 23%) after combined treatment, as compared to fructose-fed animals, although this change was not statistically significant. Consistent with these data, phosphorylated IκB cytoplasmic level was increased by \(\sim 20\% \) upon high-fructose diet as compared to controls (Fig. 4b, \(p < 0.01 \), F vs. C; \(p < 0.05 \), SF vs. C), while total IκB was not changed. This resulted in the increased phospho-IκB/total IκB ratio only in the fructose-fed group (Fig. 4b, \(p < 0.01 \), F vs. C), an effect that was partially reduced by stress in the fructose + stress group (Fig. 4b, \(p < 0.05 \), SF vs. F).

Since both high-fructose diet and stress can modulate gut permeability and release of bacterial toxins into circulation,
we examined the expression of liver inflammatory marker activated by bacterial toxins such as TLR4 and NLRP3. The results demonstrated increased TRL4 mRNA in both stressed groups (Fig. 5a, \(p < 0.01 \), S vs. C; SF vs. C), clearly pointing out the effects of stress on this receptor. The increment of TRL4 mRNA by 70% is also evident when fructose + stress group is compared to fructose-fed animals (Fig. 5a, \(p < 0.05 \), SF vs. F). On the other hand, NLRP3 protein was not changed in any of the examined groups (Fig. 5b), which suggests that this mechanism is not involved in the fructose-induced hepatic inflammation.

Other important components in the regulation of both metabolic inflammation and insulin resistance in the liver are JNK1/2 and ERK kinases. The activity of JNK1 (as reflected by the ratio of phosphorylated p46 isoform at Thr\(^{183}/\)Tyr\(^{185} \)) and total JNK1) was increased by fructose feeding by 29% (Fig. 6a, \(p < 0.05 \), F vs. C). On the other hand, the level of ERK activity (as reflected by the ratio of phosphorylated ERK at Thr\(^{202}/\)Tyr\(^{204} \) and total ERK protein) was not altered by the treatments (Fig. 6b). Thus, fructose feeding promoted hepatic inflammation, an effect that was partially attenuated by stress.

Effects of high-fructose diet and/or stress on the levels of energy sensors in the liver

To assess whether fructose feeding alters energy-sensing pathways in the liver, we measured activation indexes of hepatic AMPK, SIRT1 and PGC-1α signaling. In parallel with increased hepatic inflammation, fructose decreased the ratio of cytoplasmic phospho-Tyr\(^{172} \) AMPK/total AMPK by 23 and 29% in fructose and fructose + stress groups, respectively, compared to controls, suggesting a decrease in AMPK hepatic activity (Fig. 7a, \(p < 0.01 \), F vs. C; SF vs. C). Of note, the decreased phospho-AMPK/total AMPK ratios in these groups were due to a significant increase of total AMPK protein (+40 and +48%) (Fig. 7a, \(p < 0.01 \), F vs. C; SF vs. C, medium panel) rather than a decrease in phosphorylation (Fig. 7a, left panel). Stress treatment alone tended to decrease phospho-AMPK/total AMPK ratio, but this effect did not reach statistical significance (Fig. 7a, \(p = 0.063 \), S vs. C). The increased total AMPK protein was not the result of altered gene expression since AMPK mRNA was not changed after applied treatments (Fig. 7b). In addition, SIRT1 protein expression was increased in the liver of unstressed fructose-fed animals as compared to untreated control group (Fig. 7c, \(p < 0.05 \), F vs. C). Although the same trend was observed in the fructose + stress group, the fructose effect was attenuated by stress and did not reach statistical difference compared to both control and stress groups. Furthermore, nuclear levels of PGC-1α were not affected by either dietary fructose and/or stress (Fig. 7d).

Fig. 5 The levels of TLR4 mRNA and NLRP3 protein in the liver after high-fructose diet and chronic stress. Relative quantification of TLR4 mRNA (a) and NLRP3 protein (b) in the liver of control untreated (C), fructose-fed (F), stressed (S) and fructose-fed stressed (SF) rats was done relative to level of β-actin mRNA and protein, respectively. Values are means ± SEM and are presented as fold of control (\(n = 8–9 \)). Comparisons between groups were made by two-way ANOVA followed by post hoc Tukey test. Two-way ANOVA indicated the main effect of stress on the TLR4 mRNA (\(p < 0.001 \)). Different symbols denote the values that are significantly different from control group (\(**p < 0.01 \)) or fructose-fed group (\(\ddagger p < 0.05 \)).
In this study, we demonstrated that high-fructose diet triggered hepatic inflammation, characterized by the activation of NFκB and JNK signaling pathways and increased levels of proinflammatory cytokines TNFα and IL-1β. Fructose overload also resulted in hypertriglyceridemia, glucose intolerance and impaired hepatic insulin signaling, but without ectopic lipid accumulation in the liver. These metabolic perturbations were accompanied by decreased hepatic AMPK activity. On the other hand, when high-fructose diet was applied together with chronic unpredictable stress, hepatic inflammation was partially prevented and glucose tolerance was preserved, most likely due to anti-inflammatory effects of glucocorticoids in the liver.

Many studies have linked fructose overconsumption to the development of obesity and metabolic disorders [35]. In the present study, both fructose-fed groups had decreased solid food intake, but increased total energy intake compared to the rats on standard chow diet. Fructose diet did not increase liver or body weight in any of examined groups. Namely, other studies showed that a longer exposure to high-fructose diet (above 20 weeks) is needed to induce weight gain [36]. Still, the liver-to-body weight ratio was increased in fructose-fed unstressed animals, which was not related to increased hepatic triglycerides. Moreover, histological analysis did not show ectopic accumulation of hepatic lipids or signs of hepatic steatosis in any of examined groups. Although fructose is referred to as lipogenic sugar, essential for the development of hepatic steatosis is higher fructose concentration [37] or prolonged treatment (more than 10 weeks) [38]. Still, the results from the present study confirmed hypertriglyceridemia and altered hepatic fatty acids composition as metabolic hallmarks of fructose-enriched diet. Namely, hepatic fatty acid profile was characterized by a higher proportion of MUFA, lower proportion of PUFA and increased oleic/stearic acid ratio (Δ9 desaturase index), regardless of stress. These results are in accordance with other animal studies using high-fructose diet [39–41]. In addition, it was previously demonstrated that fructose-induced increase of MUFA and decrease of PUFA in the liver were not accompanied by lipid accumulation and hepatic steatosis [39, 40], but rather with increased secretion of triglycerides, as observed in the present study.

Chronic unpredictable stress increased plasma corticosterone in stressed rats, which points to the activation of HPA axis and normal physiological response to chronic stress [42]. Interestingly, when stress was combined with dietary

Discussion

The levels of JNK and ERK phosphorylation in the liver after high-fructose diet and chronic stress. Representative Western blots and relative quantification of phospho-JNK1 (p46 isoform)/total JNK1 (a) and phospho-ERK/total ERK (b) ratio in the liver of control untreated (C), fructose-fed (F), stressed (S) and fructose-fed stressed (SF) rats. Lower parts of the blots were probed with antibodies against β-actin as loading control for whole cell extract. Values are means ± SEM and are presented as fold of control (n=8–9). Comparisons between groups were made by two-way ANOVA followed by post hoc Tukey test. Two-way ANOVA showed that high-fructose diet is the main factor affecting JNK1 activity (ratio of phospho-JNK1 and total JNK1) (p<0.01). Asterisk indicates significant difference with respect to the control (*p<0.05)
fructose, the stress-induced rise of plasma corticosterone was absent, most likely due to reduced central reactivity of HPA axis [43]. On the other hand, hepatic corticosterone was increased in both stress and fructose + stress groups, possibly as a result of enhanced glucocorticoid prereceptor metabolism induced by high-fructose diet [27]. This state did not affect GR gene expression, as revealed in this and our previous study, but rather led to activation and nuclear accumulation of GR [44]. In addition, chronic stress per se did not alter glucose homeostasis, which is in line with previous reports that chronic mild stress has relatively modest effects on glucose homeostasis that occurs primarily at the beginning of stress exposure [45]. On the other hand, fructose-fed unstressed animals displayed altered glucose homeostasis, as characterized by hypoglycemia, hyperinsulinemia and impaired glucose tolerance, as revealed by IPGTT. Other studies also demonstrated that high-fructose diet induces hyperinsulinemia, disturbs both glucose and insulin tolerance [46], evokes insulin resistance and delays glucose disappearance rate [47]. The observed hypoglycemia in the fructose-fed animals is most likely the result of decreased expression of key gluconeogenic enzyme PEPCK, which is in accordance with previous studies on fructose-fed rats [27, 36]. Interestingly, in the fructose + stress group, the stress treatment prevented the fructose-induced glucose intolerance, which is supported by previous research indicating that chronic variable stress (CVS) improves glucose tolerance in sucrose-fed rats [48]. Indeed, in that study, CVS induced beneficial effects not through changes in fasting glucose, insulin or corticosterone, but rather through a
faster stress-related glucose clearance [48]. Therefore, in our animal model, the high-fructose diet induced glucose intolerance and prediabetes, an effect that was prevented by the stress treatment.

Fructose diet increased hepatic levels of proinflammatory cytokines TNFα and IL-1β, while pro-inflammatory IL-6 and anti-inflammatory cytokines IL-4 and IL-10 remained unchanged, consistent with hepatic inflammation [49, 50]. The increased hepatic cytokine levels could be mediated by proinflammatory NFκB and JNK signaling pathways in the liver [51]. Indeed, consistent with previous reports [52], fructose consumption increased both the hepatic NFκB signaling, as indicated by IκBα phosphorylation and NFκB nuclear translocation, and JNK signaling, as revealed by the increase in the phospho-JNK1 to total JNK1 ratio. Consistent with the fact that NFκB and JNK signaling have been implicated in insulin resistance, fructose feeding increased the inhibitory phosphorylation of IRS1 on the Ser307, which represents an early hallmark of tissue insulin resistance [51]. On the other hand, hepatic ERK signaling pathway, which also regulates insulin sensitivity through inhibitory phosphorylation of IRS1 on Ser612 [6], was not changed in these animals. Therefore, high-fructose diet induced the vicious cycle comprised of hepatic inflammation, decreased hepatic insulin sensitivity and glucose intolerance [53].

It is not fully understood how excess nutrients are sensed within the cells and how they promote the inflammatory program in the context of high-fructose diet. Several studies have revealed a close link between metabolic inflammation and reduced AMPK activity, e.g., in adipose tissue and heart [11, 54], and few studies have investigated the relationship between fructose-induced inflammation and AMPK signaling pathway. In our study, high-fructose diet diminished hepatic AMPK activity, represented as decreased phospho-AMPK/AMPK ratio [55]. In agreement with the results obtained by Chen et al. [56], high-fructose diet increased total AMPK level without significantly affecting phospho-AMPK. Several mechanisms could account for the observed effects of fructose diet on the AMPK activity. Previous study demonstrated that elevated insulin can significantly increase total AMPKα protein level without affecting AMPK phosphorylation level [57], which is in accordance with the results obtained in the present study. In addition, according to study by Beauloye et al. [58], inhibitory effect of insulin on AMPK protein is reflected in its decreased activity. However, in our study, the observed phenomenon was not related to the altered expression of AMPK gene, but possibly to AMPK phosphorylation at Ser483 driven by insulin-induced Akt, which reduces Thr172 phosphorylation and inhibits AMPK activation [58]. Furthermore, high-fructose diet, via the increase in methylglyoxal production, could provoke carbonyl stress on AMP binding sites in AMPK, thus irreversibly blocking the phosphorylation of AMPK on Thr172 and its activation [59]. It is conceivable that fructose-induced hepatic inflammation through the stimulation of the NFκB signaling pathway is facilitated by decreased AMPK activity, as observed in the fructose-fed group [16]. This hypothesis is supported by prior findings that consumption of 30% fructose solution leads concomitantly to increased pro-inflammatory cytokines and decreased phospho-AMPK/AMPK ratio in the rat liver [56] and that fructose-induced inflammation and NFκB activation in the diabetic murine heart is causally related to reduced AMPK activity [12]. The suggested role of AMPK as an important energy sensor linking fructose metabolism to the regulation of inflammatory signaling is further supported by recent findings of Cao et al. [60], showing that fructose amplifies inflammatory potential in human mononuclear cells via a reduction of AMPK activity. However, high fructose concentrations in the liquid form can affect gut permeability, leading to the leakage of bacteria and their endotoxins into the circulation [61]. Therefore, metabolic effects of fructose on hepatic inflammation may not be direct but then conducted through the toxic effects of bacterial products on the liver cells, especially through activation of TLR4 [62] and NLRP3 inflammasome [63]. However, in the present study, both TRL4 mRNA and NLRP3 protein were unchanged in the fructose-fed group, suggesting that this mechanism was not involved in the observed fructose-induced hepatic inflammation. Interestingly, the results clearly showed the effect of stress on TLR4 mRNA, which was increased in all stressed rats independently of fructose diet. This could be a consequence of increased saturated palmitic and oleic fatty acids in the plasma lipids of fructose + stress group, observed in this and our previous study [64], which can act as endogenous TLR4 ligands in hepatic cells [65]. However, this was not accompanied with increased NLRP3 protein or activated NFκB signaling pathway. Consequently, stress treatment alone did not change any of the monitored cytokines and did not alter the expression of proinflammatory kinases as compared to the control group. Namely, chronic restraint stress could promote immune suppression through activation of TLR4 and subsequent modulation of phosphoinositide 3-kinase (PI3K)/Akt signaling [66]. Therefore, after combined treatment stress generally tended to decrease the expression of proinflammatory cytokines, although a significant protective effect was observed only for TNFα and IL-1β proteins in the proinflammatory context of fructose feeding in the fructose + stress group. On the contrary, the combined treatment increased only IL-6 levels while did not affect anti-inflammatory cytokines (IL-4, IL-10). This is overall in agreement with previous finding that chronic psychological stress mitigates the effects of high-fructose–high-fat diet on hepatic inflammation [22], by promoting an adaptive anti-inflammatory response. This effect of stress most likely results from the observed increase in hepatic corticosterone that generally
inhibits inflammation. However, consistent with our results, corticosterone can stimulate the synthesis and production of IL-6 through prolonged activation of signal transducer and activator of transcription 3 (STAT3) [67]. The increased IL-6 levels could account for the increased inhibitory IRS1 Ser307 phosphorylation in the group subjected to combined treatment, in the absence of JNK1 activation and probably through the Janus kinase (JAK)/STAT pathway [68]. Nevertheless, in spite of signs of hepatic insulin resistance, animals in the fructose + stress group demonstrated preserved glucose tolerance, which implies dissociation of these two events and involvement of other insulin-sensitive tissues, like muscle or adipose tissue, in the regulation of glucose metabolism [69].

Intriguingly, although AMPK activation is reduced in both fructose groups regardless of stress, it is not followed by increased inflammation and activation of NFκB pathway after combined treatment. This is most likely an outcome of increased level of corticosterone and its anti-inflammatory activity in the liver of these animals, which through decreased phospho-IκB/IκB ratio could directly inhibit the NFκB signaling pathway [70].

There are multiple mechanisms by which AMPK may alter NFκB activity, including AMPK-downstream regulators such as SIRT1, PGC-1α and forkhead box protein O1 (FoxO1) [16]. However, SIRT1 and PGC-1α were not decreased with high-fructose diet in our study, and hence could not be considered as mediators of fructose-induced inflammation. Another possible mechanism for increased inflammation may be a decreased phosphorylation of FoxO1 and a consequent stimulation of inflammation [71]. This hypothesis is supported by previous reports that high-fructose diet leads to increased nuclear FoxO1 in the rat and hamster liver [72], while augmented FoxO1 expression potentiates pro-inflammatory cytokine production in the liver of diabetic mice [71].

In summary, this study suggests that high-fructose diet resulted in decreased AMPK activity, induced hepatic inflammation, impaired glucose tolerance and hepatic insulin signaling, without concomitant lipid accumulation or hepatic steatosis. Chronic stress alone had no effect on AMPK activity, hepatic inflammation and insulin sensitivity. Chronic stress combined with a high-fructose diet did not prevent fructose-induced suppression of AMPK activity but could restore glucose tolerance and partially prevent development of hepatic inflammation. Future studies are warranted to determine the exact role of AMPK in fructose-induced hepatic inflammation.

Acknowledgements This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant III41009) and SCOPES JRP (Grant no. IZ73ZO_152331). The authors gratefully appreciate Dr. Đurđica Ignjatović for providing ERK and phospho-ERK antibodies, Dr. Desa Milanović for providing phospho-AMPK antibody and Dr. Ivana Stojanović for providing NLRP3 antibody.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

